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Abstract
We apply a theory (Böhm et al 2006 AIP Conf. Proc. 850 111, 2007 Int. J.
Mod. Phys. B 21 2055) developed recently on dynamic two-pair fluctuations
to layered systems, such as electrons in semiconductor hetero-structures or
3He on graphite. The theory fulfils the zeroth and first frequency moment sum
rule. Results are presented for the static effective particle–hole interaction, the
dynamic structure function and the dispersion of the plasmon.

PACS numbers: 71.10.−w, 52.25, 73.20Mf

1. Motivation

Two-dimensional (2D) systems show more pronounced correlation effects than the bulk: the
particles have fewer possibilities to ‘evade’ and to screen the interaction. It is worthwhile to
apply the dynamic theory developed recently [1] for fermions to layers of N electrons or 3He
atoms (with an area density n). A common paradigm is to use a generalized random phase
approximation (RPA) form for the density response function

χ(q, ω) = χ0(q, ω)/[1 − V eff(q)χ0(q, ω)]. (1)

In charged systems for the effective static interaction, commonly V eff =: (1 − G)vC with
vC(q) = 2nπe2/q is used [3]. By including dynamic pair fluctuations our approach improves
both the numerator and the denominator of (1) (we refer to [2] for details)

χ(q, ω) = χs(q, ω)/[1 − V eff(q)χs(q, ω) − �(q, ω)]. (2)

In general, V eff in (1) is the dynamic irreducible interaction in the particle–hole channel.
Summing all parquet diagrams in a static local approximation yields the ‘correlated’ RPA
(cRPA), where V eff(q) is determined by the (free) static structure factor S(F)(q)

V eff(q) → Vph(q) = h̄2q2

4m

[
1

S2(q)
− 1

S2
F(q)

]
. (3)
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Not surprisingly, different sum-rules (SRs) for χ lead to mutually exclusive conditions [3] for
a single static function V eff(q); equation (3) is designed to fulfil the ω0-SR, but it violates the
ω = 0 requirements [3, 4]. This is corrected by including dynamic pair fluctuations.

Measurements of the dynamic structure factor S(q, ω) of 3He films [1] yield another
compelling argument for our approach: the collective mode is found inside a broad continuum,
not explicable with (1). An effective mass may move the theoretical value toward the
experimental one; however, it also shifts the particle–hole (1ph) continuum to stay below.
Either the phonon–roton is inside the 1ph continuum or the experiments show a broad multi-
particle continuum. Both effects are contained in our approach.

For 2D electrons, a most advanced dynamic theory was developed by Neilson et al [5].
Invoking the ‘self’ motion γ s of the exchange-correlation hole they proposed

χ(q, ω) = χ̃ s(q, ω)

1 − Ṽ eff(q)χ̃ s(q, ω) − mω
h̄q2 [γ (q, ω) − γ s(q, ω)]

. (4)

χ̃ s(q, ω) = χ0(q, ω − γ s) is the Lindhard function at a frequency shifted due to the self-
motion. Using v̄ = vSTLS (cf (19) of [5]) and −q′′ = q + q′, the memory function γ reads

mω

h̄q2
γ (q, ω) = 1

2N

∑
q′

|Yq,q ′,q ′′ |2
∫ ∞

−∞

∫ ∞

−∞

dω′ dω′′

N2

S(q ′, ω′)S(q ′′, ω′′ − ω′)
(ω − ω′′)ω′′

Yq,q ′,q ′′ =
(

q · q′

q2
vSTLS(q ′) +

q · q′′

q2
vSTLS(q ′′)

)
.

(5)

In each self-consistency step in solving (4)–(5), the static interaction Ṽ eff(q) is adjusted so
that the static S(q) obtained from Im χ remains unchanged and coincides with that of Monte
Carlo (MC, [6]). If the rhs of (5) is simplified by using the plasmon-pole-approximation
S(q, ω) ≈ NS(q)δ(h̄ω − ε(q)) with ε(q) = h̄2q2/2mS(q), one arrives at

mω

h̄q2
γ (q, ω) ≈ 1

2N

∑
q′

|Yq,q ′,q ′′ |2 S(q ′)S(q ′′)
h̄ω − ε(q ′) − ε(q ′′)

ω

ε(q ′) + ε(q ′′)
. (6)

We compare this to the theory containing dynamic pair correlations for charged bosons [7],
where χ(q, ω > 0) = S(q)/[h̄ω − ε(q) − 	(q, ω)]. The self-energy 	 has the same poles as
(6); using the direct correlation function X and omitting static triplet fluctuations

	(q, ω) = 1

2NS(q)

∑
q′

∣∣∣∣h̄2q · q′

2m
X(q ′) +

h̄2q · q′′

2m
X(q ′′)

∣∣∣∣
2

S(q ′)S(q ′′)
h̄ω − ε(q ′) − ε(q ′′)

. (7)

The main difference is the specific vertex Yq,q ′,q ′′ and a renormalization of the Feynman
energies in the self-consistent treatment. The bosonic theory [7, 8] very successfully improved
the prediction for the 4He spectrum compared to the cRPA.

2. Dynamic pair theory

In deriving our fermionic theory [1] we therefore closely followed that for bosons. As a
first step, exchange effects and topologically similar ladder diagrams are neglected, since
the physical effects governing the collective mode are expected to be the same in 4He and
3He. Also, with increasing coupling, where correlations get more and more important, the
Pauli principle becomes less relevant than interaction effects. Finally, if the exact S(q) is
used in 	(q, ω), exchange is properly accounted for in many static quantities, as our χ(q, ω)

preserves the ω0 (as well as the f −) sum-rule.
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Figure 1. (a) Static local field correction and (b) static interaction of 2D electrons. The densities
correspond to n−1 = πa2

Br2
s with rs = 1, 2 and 5 (full, dashed and dotted line, respectively). (c)

Static interaction of 2D 3He for n = 0.061Å
−2

within the full theory (solid line) and RPA (dashed).

When possible without losing the essential physics, we replaced the dynamic fluctuations
by their Fermi-sea averages, to attain numerically tractable equations. Despite these
simplifications the resulting χs(q, ω) and �(q, ω) in (2) are unwieldy. We refer to [2] for
the explicit expressions and here prefer to discuss the consequences. Ground-state properties
enter our theory via Vph(q) and ε(q), where we use S(q) from MC [9]. Since MC cannot
yield high accuracy q → 0 data, some caution is in order there. However, x-ray scattering
experiments probe large q, where the MC S(q) is excellent and where dynamic correlations
are highly relevant.

Of particular interest is the static ω = 0 behavior of the response function, where χ cRPA

with Vph (3) is even qualitatively wrong. Figure 1 shows the improved static Ṽph

χ(q, ω = 0) := χ0(q, 0)

1 − Ṽph(q, 0)χ0(q, 0)
:= χ0(q, 0)

1 − vC(q)(1 − G(q, 0))χ0(q, 0)
(8)
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Figure 2. Logarithm of S(q, ω) for rs = 40 in (a) cRPA and (b) including dynamic pair
correlations. The white line gives the main peak, squares the Feynman excitations. (Any cRPA
strength outside the 1ph region is due to artificial plasmon broadening).
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Figure 3. Dynamic structure factor for wave vectors (in Fermi vectors kF), q = 1.2, 1.6, 2.0 (top
row, (a)–(c)) and 2.4, 2.8, 3.2 (bottom row, (d)–(f )) at rs = 40. Full line: present theory, dashed
line: cRPA (with artificially broadened plasmon).

(contributions result from both, χs(q, 0) and �(q, 0)). As required, G(q, 0) grows linearly
with q and Ṽph(q, 0) reaches a finite value, both for electrons and for 3He. The quantitative
values are not correct [3, 10], due to the above-mentioned approximations.

Dynamic correlations become important for the plasmon at rs � 10. For comparison
with [5] we chose the same rs (= 40, supercooled liquid) to show in figure 2 the spectrum for
q � kF/2 (below the RPA ∝ √

q behavior applies). At q � 2.4kF the plasmon re-emerges
from the 1ph continuum on the low energy side and flattens when it reaches twice the Bijl–
Feynman ‘roton’ value; (the correct value requires a renormalization of ε(q) in (7)). A detailed
comparison of the plasmon with and without including two-pair excitations is given in figure 3.
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For high ω we predict a significantly lower energy implying a smaller qc for Landau damping
(1.62 instead of 2.05 in cRPA), as well as a distinctly visible low ω mode. Experiments at
higher rs [11] would be highly desirable.
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